306. Interaction at a Distance in Conjugated Systems. Part III. ${ }^{1}$ Effect of Aryl and Heteroaryl Groups on the Infrared Intensities of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ Stretching Bands.

By A. R. Katritzky, A. J. Boulton, and D. J. Short.

Abstract

The intensities of the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ stretching modes in 4 -substituted stilbenes and tolans depend on the magnitude of the conjugative power of the substituent, but not on whether it is an electron-donor or -acceptor. The 2 - and 4 -pyridyl and the 2 - and 4 -(pyridyl 1 -oxide) groups behave as strong electron-acceptors; electron-withdrawing substituents in the phenyl ring in styryl- and phenylethynyl-pyridine 1 -oxide are unable to cause the N-oxide group to donate electrons.

The intensity of an infrared absorption band is determined by the rate of change of dipole moment with the normal co-ordinate at the equilibrium position. For vibrations which are effectively localised in one bond, such as the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies, and within a series of closely related molecules, it is a reasonable assumption that this will depend on the magnitude of the charge asymmetry in that bond (cf. discussion in ref. 2). The intensities of these bands in a series of diaryl-acetylenes and -ethylenes should therefore afford information about the net displacement of electrons from one ring towards the other in these compounds.

(I)

(II)

(III)

We wished to investigate electronic interactions in styryl- and phenylethynyl-pyridines and -pyridine 1 -oxides by this method. For comparison, a series of substituted stilbenes and tolans was prepared. 4-Methoxytolan had been reported by Orékhoff and Tiffeneau ${ }^{3}$ to result from 4-methoxystilbene dibromide and aqueous potassium carbonate. In our hands this procedure gave a product of m. p. $89-91^{\circ}$ not raised by further recrystallisation and in agreement with that reported by those authors $\left(89-90^{\circ}\right)$, but the compound showed a carbonyl band in the infrared spectrum, and analysis gave $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$. The methoxytolan had obviously been hydrated to compound (I) or (II); these compounds are both known and have m. p.s of $94^{\circ}{ }^{4}$ or $98^{\circ} 5$ (I) and $76^{\circ} 6$ or $77-78^{\circ} 7$ (II). The infrared spectrum supported (I) but did not exclude a mixture with a small amount of (II). (i) The position of the $\nu \mathrm{C}=\mathrm{O}$ at $1677 \mathrm{~cm} .^{-1}$ was close to that of acetophenone ${ }^{8}$ at $1680 \mathrm{~cm} . .^{-1}$ as expected for (I), whereas that for (II) should be somewhat lower. (ii) The intensities of the bands at $1611 \mathrm{~cm} .^{-1}$ (105) and at $1514 \mathrm{~cm} .^{-1}$ (390) are those expected for (I); these bands should be of respectively higher and lower intensity in (II). ${ }^{9}$ (iii) The position of the $\mathrm{MeO}-\mathrm{Ar}$ stretching frequency at $1248 \mathrm{~cm} . .^{-1}$ also supports (I)..10

The infrared spectra of the above stilbenes and tolans, and of related stilbazoles, phenylethynylpyridines, and their N-oxides were determined as $0 \cdot 189 \mathrm{~m}$-solutions in

[^0]Table 1.

purified chloroform in a 0.106 mm . cell. As in previous work, apparent extinction coefficients were recorded; the justification for this and the errors and approximations involved therein have been discussed, ${ }^{8}$ as has the degree of reproducibility that may be expected on other machines. ${ }^{11}$ The bands connected with the $-\mathrm{CH}=\mathrm{CH}-$ and $-\mathrm{C} \equiv \mathrm{C}-$ groups are collected in Table 1.

The intensities of the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching bands in the stilbenes and tolans (Table 1 , Nos. 1-6) depend as expected on the conjugative power of the substituent, but not on whether the substituent is an electron-donor or -acceptor. The intensity of the $\mathrm{C}=\mathrm{C}$ stretching band in the unsubstituted stilbazoles and their 1-oxides (Nos. 7, 8, 12, 15, 19) is $(30-40)$ * for the $2-\mathrm{Py}, 4-\mathrm{Py}$, and $4-\mathrm{PyO}$ compounds, i.e., comparable with that of 4 -nitrostilbene. The 3 -Py compound has a lower intensity (15); the 3 -position of the pyridine ring is known to accept electrons less readily than the 2 - or the 4 -position. The $2-\mathrm{PyO}$ compound has a higher intensity (70); this may be due to its strong electronattracting power ${ }^{12}$ or to a special interaction (as III). In the unsubstituted phenylethynylpyridines the available 2-Py, 4-Py, and 4-PyO compounds all have intensities in the range ($30-40$), about half that of 4 -nitrotolan.

When the series 4-Py $\cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}$ and $4-\mathrm{Py} \cdot \mathrm{C}: \mathrm{C}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}$ are considered (Table 1, Nos. 9-14), the intensities drop smoothly as X changes from the strongly electrondonating NMe_{2} group to the electron-accepting NO_{2} group. The intensities of all the 4 -PyO compounds are similar to those of their 4-Py analogues, indicating that the 4 -substituted pyridine oxide ring is acting as an electron-acceptor throughout, and that in $4-\mathrm{PyO} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}$ and $4-\mathrm{PyO} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}$ the nitro-group is unable to polarise the $\mathrm{N}^{+}-\mathrm{O}^{-}$group so as to cause it to donate electrons. This is in agreement with our results in the phenylpyridine l-oxide series. ${ }^{13} \dagger$

The positions of the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ stretching bands are $1644-1630[1635 \pm 4]$ and $2230-2220 \mathrm{~cm} .^{-1}$, in good agreement with previous work. ${ }^{14 a, 15 a}$

The $\mathrm{CH}=\mathrm{CH}$ Out-of-plane CH Deformation.-In contrast to the stretching mode, this mode (Table 1, col. 3) is of essentially constant intensity as well as position, $969-959 \mathrm{~cm}^{-1}$ ($125-180$) $\left[963 \pm 3 \mathrm{~cm} .^{-1}(150 \pm 20)\right]$, except that in the 2 -substituted compounds (Nos. 7, 15) the ε_{A} is lower (100), which may be due to interactions of type (III). This band was found at $\left[980 \pm 2 \mathrm{~cm} .^{-1}(130 \pm 25)\right]$ for a series of β-aryl and β-heteroaryl acrylates ($\left.\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}\right)^{8}$ and occurs at $968-964 \mathrm{~cm} .^{-1}(90-110)$ in trans-dialkylethylenes. ${ }^{14 b}$ A careful study of the intensity of this band for stilbenes (in $\mathrm{CS}_{2}, \mathbf{3} \mathrm{~mm}$. cells) has been made by Orr, ${ }^{16}$ who found that the intensity area was relatively constant but that the band width was increased, and the peak height decreased, by orthosubstituents. Orr found peak intensities of ca. 340 for unhindered compounds; the discrepancy with the present values is presumably because Orr's values were corrected (by up to 25%) from the ε_{\perp} values observed because the solutions used by him were much more dilute than in the present work, and because of the difference in solvents.

Stilbenes and stilbazoles with a monosubstituted benzene ring attached to the ethylenic bond show a band or pronounced shoulder at ca. $985-980 \mathrm{~cm} .^{-1}$ (col. 2). A band or

[^1]shoulder at $955-940 \mathrm{~cm} .^{-1}$ occurs in stilbenes and stilbazoles with a pyridyl or nitrophenyl group and in some other compounds (col. 4).

The stilbenes and stilbazoles show a band (absent in Nos. 4, 8) at $876-847 \mathrm{~cm} .^{-1}(10-$ 40) $\left[862 \pm 9 \mathrm{~cm} .^{-1}(25 \pm 10)\right]$, which is presumably a skeletal mode; Brown and Sheppard ${ }^{17}$ have shown that the $-\mathrm{CH}=\mathrm{CH}$ - out-of-plane out-of-phase mode (the mode usually referred to merely as " out-of-plane" is the in-phase one) absorbs near $750 \mathrm{~cm} .^{-1}$. The $-\mathrm{CH}=\mathrm{CH}$ - in-plane modes occur near $1300 \mathrm{~cm} .^{-1},{ }^{14 c, 15 b}$ but are of low intensity: the stilbenes and the stilbazoles show one or two bands or shoulders in this region at ca. 1320 and $1305 \mathrm{~cm} .^{-1}(5-10)$. Bands at $1304 \mathrm{~cm} .^{-1}(65)$ and $1304 \mathrm{~cm} .^{-1}(100)$ in Nos. 10 and 17 respectively are probably connected to the OMe groups. ${ }^{10}$

The tolans and phenylethynyl-pyridines containing a phenyl group show a band (col. 8) at $915-911 \mathrm{~cm} .^{-1}(10-25)\left[913 \pm 2 \mathrm{~cm} .^{-1}(15 \pm 5)\right]$ which is probably a nuclear vibration. ${ }^{11}$ A band of unknown origin is shown (col. 7) at $1145-1136 \mathrm{~cm} .^{-1}$ in the pyridine oxides and several other compounds.

Bands due to Ring Vibrations.-With few exceptions, all the remaining bands of $\varepsilon_{\mathrm{A}} \geqslant 15$ could be assigned to ring or substituent vibrations. Table 2 gives the bands assigned to the mono- and para-di-substituted benzene rings of the stilbenes and tolans. Bands due to the monosubstituted rings are relatively invariant, demonstrating the small effect of remote substitution. Substituents directly attached to the disubstituted rings affect the bands in a manner in agreement with the conclusions previously reached. ${ }^{2}$

Bands arising from the mono- and para-di-substituted benzene rings ${ }^{9}$ in the heterocyclic compounds have already been published, as have those of the 2 - and 3 -substituted heterocyclic rings. ${ }^{18}$

Table 3. Nuclear bands.

4-Substituted pyridines				4-Substituted pyridine 1-oxides			
Position (cm. ${ }^{\mathbf{- 1}}$)		Intensity (ε_{A})		Position (cm. ${ }^{-1}$)		Intensity ($\varepsilon_{\text {A }}$)	
Range	Mean	Range	Mean	Range	Mean	Range	Mean
1603-1591	1598	220-390	300	(band near $1600 \mathrm{~cm} .^{-1}$ masked)			
\{ 1553-1550	$1552{ }^{\text {a }}$	15-20	$15)$	1495-1475	1485	195-420	295
$\left\{\begin{array}{c}b \text { absent or masked } \\ \text { (band near } 1500 \mathrm{~cm} .^{-1} \text { masked) }\end{array}\right.$				1451-1441	1446	25-60	50
				$\left\{\begin{array}{l}1259-12433^{a} \\ 1264-1260\end{array}\right.$	$\left.\begin{array}{l}1249 \\ 1261\end{array}\right\}$	290-460	370
$\left\{\begin{array}{l}1419-14155^{a} \\ 1410-1407\end{array}\right.$	1417	40-70	50	1172-1165	1169	$\left\{260-390^{a}\right.$	$330\}$
($1410-1407{ }^{\circ}$	1409 \}	$40-70$	50	$1172-1165$	1169	(150-280 ${ }^{\text {b }}$	220 \}
1068-1064	1066	5-15	10				
994-990	992	35-75 ${ }^{\circ}$	55	1095-1093	1094	15-30	20
$\left\{820-818^{\text {b }}\right.$	a (below 80	$\left.5 \mathrm{~cm} .^{-1}\right)$		1033-1028	1031	95-120	110
		$120-160$	140	852 -840	846	40-75 ${ }^{\text {ad }}$	$\left.\begin{array}{r}50 \\ 270\end{array}\right\}$
				833-820	828	130-310	200

a refers to stilbazoles, b to phenylethynylpyridines (where no designation is given the two classes are considered together), c except the NMe_{2} compound which showed $\varepsilon_{\mathrm{A}} 120, d$ except the Cl compound which showed $\varepsilon_{\mathrm{A}} 140$.

Nuclear bands for the 4-pyridyl compounds (Table 1, Nos. 9-14) and the 4-substituted pyridine l-oxides (Table 1, Nos. 16-21) are summarised in Table 3. These bands have already been discussed, and the present results agree with the conclusions reached. ${ }^{18 a, c}$

Experimental

Stilbenes.-The following 4 -substituted stilbenes were prepared by the methods indicated: dimethylamino- ${ }^{19}\left(25 \%\right.$), m. p. 150°, sublimed at $145^{\circ} / 0 \cdot 1 \mathrm{~mm}$. (lit., ${ }^{19} \mathrm{~m}$. p. 150°); methoxy- ${ }^{20}$ (20%), needles, m. p. $140-141 \cdot 5^{\circ}$, sublimed at $130^{\circ} / 0 \cdot 1 \mathrm{~mm}$. (Found: C, $85 \cdot 8 ; \mathrm{H}, 6.7$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 85 \cdot 8 ; \mathrm{H}, 6.7 \%$) (lit., ${ }^{20} \mathrm{~m} . \mathrm{p} .136^{\circ}$); methyl- ${ }^{21}(45 \%)$, m. p. 119° (lit., ${ }^{21} \mathrm{~m} . \mathrm{p}$.
${ }_{17}$ Brown and Sheppard, Trans. Faraday Soc., 1955, 51, 1611.
18 Katritzky and co-workers, J., 1958, (a) 2192, (b) 2195, (c) 2198, (d) 2202, (e) 3165.
19 Dey and Row, J. Ind. Chem. Soc., 1925, 1, 285; Chem. Zentr., 1925, II, 1763.
${ }^{20}$ Hewitt, Lewcock, and Pope, J., 1912, 101, 606.
${ }_{21}$ Drefahl and Plötner, Chem. Ber., 1958, 91, 1276, 1280.
119°) ; chloro- ${ }^{22}(36 \%)$, m. p. $131-131 \cdot 5^{\circ}$, sublimed at $130^{\circ} / 0 \cdot 1 \mathrm{~mm}$. (lit., ${ }^{22} \mathrm{~m}$. p. 129°); nitro- ${ }^{23}$ (20%), m. p. $158-159^{\circ}$ (lit., ${ }^{23}$ m. p. 155°).

4-Methoxytolan.-Bromine (5.4 g .) in chloroform ($50 \mathrm{c} . \mathrm{c}$.) was added at 0° to 4 -methoxystilbene (7.0 g .) in chloroform ($100 \mathrm{c} . \mathrm{c}$.). The precipitated 4 -methylstilbene dibromide (10.2 g .) was collected and (1.5 g .) refluxed 2 hr . with $30 \% \mathrm{n}$-butanolic potassium hydroxide ($15 \mathrm{c} . \mathrm{c}$.). When cold, the whole was poured into ethanol-water ($20+80$ c.c.) and ether-extracted. Removal of solvents from the extracts then gave 4 -methoxytolan ($0.6 \mathrm{~g} ., 56 \%$), which crystallised from light petroleum (b. p. $60-80^{\circ}$) in plates, m. p. $58-60^{\circ}$, and sublimed at $60^{\circ} / 0.05 \mathrm{~mm}$. (Found: $\mathrm{C}, 86 \cdot 3 ; \mathrm{H}, 6 \cdot 1 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 86.5 ; \mathrm{H}, 5 \cdot 8 \%$).

Heating 4-methoxystilbene dibromide with aqueous potassium carbonate ${ }^{3}$ gave, on cooling, a solid which was crystallised from ethanol and then sublimed in plates, m. p. 89-91 ${ }^{\circ}$ (reported ${ }^{3}$ $89-90^{\circ}$) (Found: C, $79.4 ; \mathrm{H}, 6.3$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 79 \cdot 6 ; \mathrm{H}, 6 \cdot 2 \%$). The dinitrophenylhydrazone of methoxydeoxybenzoin crystallised from benzene in red needles, m. p. 195° (Found: $\mathrm{C}, 62 \cdot 7 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 13 \cdot 6 . \quad \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 62 \cdot 1 ; \mathrm{H}, 4.5 ; \mathrm{N}, 13.8 \%\right)$.

4-Methyltolan.-Prepared by the recorded method, ${ }^{21}$ this compound (40%) had m. p. 73 74° and sublimed at $75^{\circ} / 0 \cdot 1 \mathrm{~mm}$. (lit., ${ }^{21,24} \mathrm{~m}$. p. $78-79^{\circ} ; 72 \cdot 5-73 \cdot 5^{\circ}$) (Found: C, $93 \cdot 7 ; \mathrm{H}, 6 \cdot 2$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12}$: C, $93 \cdot 7 ; \mathrm{H}, 6 \cdot 3 \%$).

4-Chlorotolan.-Prepared as for the methyl analogue, ${ }^{19}$ the tolan (30%) separated from ethanol in plates, m. p. $83-84^{\circ}$ (Found: C, $78 \cdot 9 ; \mathrm{H}, 4 \cdot 7 . \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}$ requires $\mathrm{C}, 79 \cdot 1 ; \mathrm{H}, 4 \cdot 3 \%$).

4 -Nitrotolan.-Bromine (3.7 g.) in chloroform (25 c.c.) was added at 65° to 4 -nitrostilbene $(4.6 \mathrm{~g}$.) in chloroform ($100 \mathrm{c} . \mathrm{c}$.). On cooling, the crude 4 -nitrostilbene dibromide $[4.6 \mathrm{~g} ., \mathrm{m} . \mathrm{p}$. $203-205^{\circ}$ (decomp.)] separated. The crude dibromide (2.75 g .) was added to potassium hydroxide (2 g .) in ethanol ($100 \mathrm{c.c}$.), and the whole refluxed 30 min . On cooling, pouring into water, and ether extraction, there was obtained, from the extracts, a solid which was chromatographed on alumina. Elution with benzene gave initially 4-nitrotolan ($0 \cdot 134 \mathrm{~g} ., 18 \%$), which formed pale yellow plates (from ethanol), m. p. $120.5-121^{\circ}$, and sublimed at $120^{\circ} / 0.05 \mathrm{~mm}$. (Found: C, $74.8 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 6 \cdot 6 . \quad \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 75 \cdot 3 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 6 \cdot 3 \%$). Further elution with 1% ethyl acetate-benzene gave 4 -nitrostilbene ($0.094 \mathrm{~g} ., 12 \%$).

We thank Dr. N. Sheppard for reading the manuscript of this paper.

[^2][Received, June 16th, 1959.]

[^0]: ${ }^{1}$ Part II, preceding paper.
 ${ }^{2}$ Katritzky, J., 1958, 4162.
 ${ }^{3}$ Orékhoff and Tiffeneau, Bull. Soc. chim. France, 1925, 37, 1416.
 ${ }^{4}$ Buck and Ide, J. Amer. Chem. Soc., 1932, 54, 3013.
 ${ }^{5}$ Barnes, Cooper, Tulane, and Delaney, J. Org. Chem., 1943, 8, 153.
 ${ }^{6}$ Ney, Ber., 1888, 21, 2450.
 ${ }^{7}$ Meisenheimer and Jochelson, Annalen, 1907, 355, 291.
 ${ }^{8}$ Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
 ${ }^{9}$ Katritzky and Simmons, J., 1959, 2051.
 10 Katritzky and Coats, J., 1959, 2062.

[^1]: * Throughout this paper $\mathrm{Py}=$ pyridine, $\mathrm{PyO}=$ pyridine l -oxide, and preceding numerals indicate the position of substitution. Parentheses enclose apparent extinction coefficients and square brackets enclose arithmetic means and standard deviations.
 \dagger The fact that the intensity variations for the olefins parallel those for the acetylenes indicates that possible coupling in the former class of compound between the $\mathrm{C}=\mathrm{C}$ and the benzene vibration near $1600 \mathrm{~cm} .^{-1}$ is not important to the argument.
 ${ }^{11}$ Katritzky and Lagowski, J., 1958, 4155.
 12 Katritzky, Quart. Rev., 1952, 10, 395.
 ${ }^{13}$ Katritzky and Simmons, J., 1960, 1511.
 ${ }^{14} \mathrm{R}$. N. Jones and Sandorfy, in Weissberger, "Technique of Organic Chemistry, Vol. IX. "Chemical Applications of Spectroscopy," Interscience Publ., Inc., London, 1956: (a) pp. 369, 385; (b) p. 379; (c) p. 382.
 ${ }_{15}$ Bellamy, "i Infrared Spectra of Complex Molecules," 2nd edn., London, Methuen, 1958, (a) pp. 35, 59; (b) p. 52.
 ${ }^{16}$ Orr, Spectrochim. Acta, 1956, 8, 218.

[^2]: The Dyson Perrins Laboratory, Oxford.
 The University Chemical Laboratory, Cambridge.
 ${ }^{22}$ v. Walther and Raetze, J. prakt. Chem., 1902, 65, 283.
 ${ }^{23}$ Pfeiffer and Sergeiwskaya, Ber., 1911, 44, 1109.
 ${ }_{24}$ Scardiglia and Roberts, Tetrahedron, 1958, 3, 197.

